

General Certificate of Education Advanced Level Examination June 2010

Mathematics

MPC3

Unit Pure Core 3

Friday 11 June 2010 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

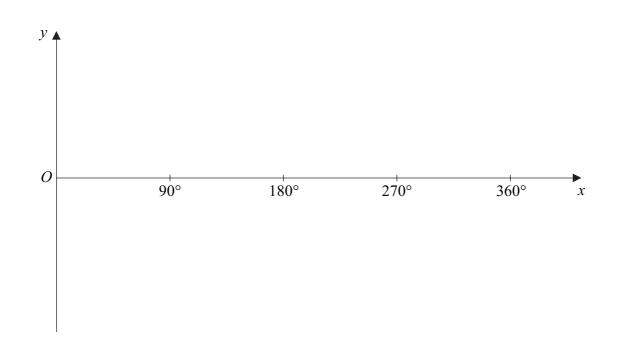
• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

- 1 The curve $y = 3^x$ intersects the curve $y = 10 x^3$ at the point where $x = \alpha$.
 - (a) Show that α lies between 1 and 2. (2 marks)
 - (b) (i) Show that the equation $3^x = 10 x^3$ can be rearranged into the form $x = \sqrt[3]{10 3^x}$. (1 mark)
 - (ii) Use the iteration $x_{n+1} = \sqrt[3]{10 3^{x_n}}$ with $x_1 = 1$ to find the values of x_2 and x_3 , giving your answers to three decimal places. (2 marks)

- $y = \frac{y}{4} + \frac{y}{1} +$
- **2 (a)** The diagram shows the graph of $y = \sec x$ for $0^{\circ} \le x \le 360^{\circ}$.

- (i) The point A on the curve is where x = 0. State the y-coordinate of A. (1 mark)
- (ii) Sketch, on the axes given on page 3, the graph of $y = |\sec 2x|$ for $0^{\circ} \le x \le 360^{\circ}$. (3 marks)
- (b) Solve the equation $\sec x = 2$, giving all values of x in degrees in the interval $0^{\circ} \le x \le 360^{\circ}$. (2 marks)
- (c) Solve the equation $|\sec(2x 10^\circ)| = 2$, giving all values of x in degrees in the interval $0^\circ \le x \le 180^\circ$. (4 marks)

x



3 (a) Find
$$\frac{dy}{dx}$$
 when:
(i) $y = \ln(5x - 2)$; (2 marks)
(ii) $y = \sin 2x$. (2 marks)
(b) The functions f and g are defined with their respective domains by
 $f(x) = \ln(5x - 2)$, for real values of x such that $x \ge \frac{1}{2}$
 $g(x) = \sin 2x$, for real values of x in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$
(i) Find the range of f. (2 marks)
(ii) Find an expression for gf(x). (1 mark)
(iii) Solve the equation gf(x) = 0. (3 marks)
(iv) The inverse of g is g⁻¹. Find g⁻¹(x). (2 marks)

Turn over ►

4 (a) Use Simpson's rule with 7 ordinates (6 strips) to find an approximation to $\int_{0.5}^{2} \frac{x}{1+x^3} dx$, giving your answer to three significant figures. (4 marks)

(b) Find the exact value of
$$\int_0^1 \frac{x^2}{1+x^3} dx$$
. (4 marks)

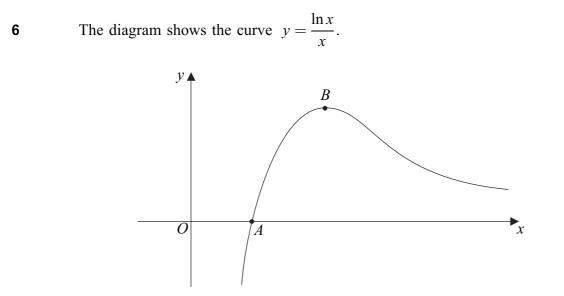
5 (a) Show that the equation

$$10\csc^2 x = 16 - 11\cot x$$

can be written in the form

$$10\cot^2 x + 11\cot x - 6 = 0 \qquad (1 mark)$$

(b) Hence, given that $10 \csc^2 x = 16 - 11 \cot x$, find the possible values of $\tan x$. (4 marks)



The curve crosses the x-axis at A and has a stationary point at B.

- (a) State the coordinates of A.
- (b) Find the coordinates of the stationary point, *B*, of the curve, giving your answer in an exact form. (5 marks)
- (c) Find the exact value of the gradient of the normal to the curve at the point where $x = e^3$. (3 marks)

(1 mark)

5

7 (a) Use integration by parts to find:

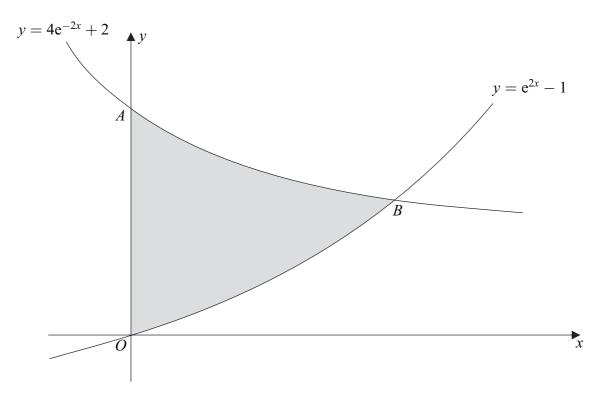
(i)
$$\int x \cos 4x \, dx$$
; (4 marks)

(ii)
$$\int x^2 \sin 4x \, dx \, . \qquad (4 \text{ marks})$$

(b) The region bounded by the curve $y = 8x\sqrt{(\sin 4x)}$ and the lines x = 0 and x = 0.2 is rotated through 2π radians about the x-axis. Find the value of the volume of the solid generated, giving your answer to three significant figures. (3 marks)

Turn over ►

8 The diagram shows the curves $y = e^{2x} - 1$ and $y = 4e^{-2x} + 2$.



The curve $y = 4e^{-2x} + 2$ crosses the *y*-axis at the point *A* and the curves intersect at the point *B*.

- (a) Describe a sequence of two geometrical transformations that maps the graph of $y = e^x$ onto the graph of $y = e^{2x} 1$. (4 marks)
- (b) Write down the coordinates of the point A. (1 mark)
- (c) (i) Show that the x-coordinate of the point B satisfies the equation

$$(e^{2x})^2 - 3e^{2x} - 4 = 0 (2 marks)$$

- (ii) Hence find the exact value of the x-coordinate of the point B. (3 marks)
- (d) Find the exact value of the area of the shaded region bounded by the curves $y = e^{2x} 1$ and $y = 4e^{-2x} + 2$ and the y-axis. (5 marks)

END OF QUESTIONS

Copyright © 2010 AQA and its licensors. All rights reserved.